The Cytron Maker Pi Pico (with Raspberry Pi Pico RP2040 soldered on Board) incorporates the most wanted features for your Raspberry Pi Pico and gives you access to all GPIO pins on two 20 ways pin-headers, with clear labels. Each GPIO is coupled with an LED indicator for convenient code testing and troubleshooting. The bottom layer of this board even comes with a comprehensive pinout diagram showing the function of each pin. Features Work out-of-the-box. No soldering! Access to all Raspberry Pi Pico's pins on two 20 ways pin headers LED indicators on all GPIO pins 3x programmable push button (GP20-22) 1x RGB LED – NeoPixel (GP28) 1x Piezo buzzer (GP18) 1x 3.5 mm stereo audio jack (GP18-19) 1x Micro SD card slot (GP10-15) 1x ESP-01 socket (GP16-17) 6x Grove port Specifications Core 32-bit ARM Cortex-M0+ CPU Clock 48 MHz, up to 133 MHz Flash Size 2 MByte Q-SPI Flash Programming Language MicroPython, C++ Board Power Input 5 VDC via MicroUSB Alternative Board Power 2-5 VDC via VSYS Pin (Pin 39) MCU Voltage 3.3 VDC
GPIO Voltage 3.3 VDC
USB Interface USB 1.1 Device Host Program Loading MicroUSB, USB Mass Storage GPIO 26x Input/Output ADC 3x 12-bit 500 ksps Temperature Sensor Built-in, 12-bit UART 2x UART I²C 2x I²C SPI 2x SPI PWM 16x PWM Timer 1x Timer with 4 x Alarm Real-Time Counter 1x Real Time Counter PIO 2x Programmable High-Speed I/O On-Board LED 1x Programmable LED On-Board Button 1x BOOTSEL Button
The Raspberry Pi Zero W extends the Raspberry Pi Zero family. The Raspberry Pi Zero W has all the functionality of the original Raspberry Pi Zero, but comes with added connectivity consisting of:
802.11 b/g/n wireless LAN
Bluetooth 4.1
Bluetooth Low Energy (BLE)
Other Features
1 GHz, single-core CPU
512 MB RAM
Mini HDMI and USB On-The-Go ports
Micro-USB power
HAT-compatible 40-pin header
Composite video and reset headers
CSI camera connector
Downloads
Mechanical Drawing
Schematics
In Get Started with MicroPython on Raspberry Pi Pico, you will learn how to use the beginner-friendly language MicroPython to write programs and connect up hardware to make your Raspberry Pi Pico interact with the world around it. Using these skills, you can create your own electro‑mechanical projects, whether for fun or to make your life easier.
Microcontrollers, like RP2040 at the heart of Raspberry Pi Pico, are computers stripped back to their bare essentials. You don’t use monitors or keyboards, but program them to take their input from, and send their output to the input/output pins.
Using these programmable connections, you can light lights, make noises, send text to screens, and much more. In Get Started with MicroPython on Raspberry Pi Pico, you will learn how to use the beginner-friendly language MicroPython to write programs and connect up hardware to make your Raspberry Pi Pico interact with the world around it. Using these skills, you can create your own electro‑mechanical projects, whether for fun or to make your life easier.
The robotic future is here – you just have to build it yourself. We’ll show you how.
About the authors
Gareth Halfacree is a freelance technology journalist, writer, and former system administrator in the education sector. With a passion for open-source software and hardware, he was an early adopter of the Raspberry Pi platform and has written several publications on its capabilities and flexibility.
Ben Everard is a geek who has stumbled into a career that lets him play with new hardware. As the editor of HackSpace magazine, he spends more time than he really should experimenting with the latest (and not-solatest) DIY tech.
The Raspberry Pi High Quality Camera offers higher resolution (12 megapixels, compared to 8 megapixels), and sensitivity (approximately 50% greater area per pixel for improved low-light performance) than the existing Camera Module v2, and is designed to work with interchangeable lenses in both C and CS Mount form factors. Other lens form factors can be accommodated using third-party lens adapters.
Specifications
Sensor
Sony IMX477R stacked, back-illuminated sensor12.3 megapixels7.9 mm sensor diagonal1.55 x 1.55 μm pixel size
Output
RAW12/10/8, COMP8
Back focus
Adjustable (12.5–22.4 mm)
Lens standards
CS MountC Mount (C/CS adapter included)
IR cut filter
Integrated
Ribbon cable length
200 mm
Tripod mount
1/4”-20
Included
1x Circuit board carrying a Sony IMX477 sensor
1x FPC cable for connection to a Raspberry Pi
1x Milled aluminium lens mount with integrated tripod mount and focus adjustment ring
1x C/CS Mount adapter
Required
C/CS Mount Lens
PiKVM V3 is an open-source Raspberry Pi-based KVM over IP device. It will help you to manage servers or workstations remotely, whatever the state of the operating system or whether one is installed.
PiKVM V3 allows you to turn on/off or restart your computer, configure the UEFI/BIOS, and even reinstall the OS using the virtual CD-ROM or flash drive. You can use your remote keyboard and mouse or PiKVM can simulate a keyboard, mouse, and a monitor, which are then presented in a web browser as if you were working on a remote system directly.
Features
HDMI Full HD capture based on the TC358743 chip (extra low latency ~100 ms and many features like compression control).
OTG Keyboard & mouse; Mass Storage Drive emulation.
Ability to simulate 'removal and insertion' for USB.
Onboard ATX power control
Onboard fan controller
Real-time clock (RTC)
RJ-45 and USB serial console port (to manage PiKVM OS or to connect with the server).
Optional AVR-based HID (for some rare and strange motherboards whose BIOS doesn't understand the OTG emulated keyboard).
Optional OLED screen to display network status or other desired information.
Ready-made board. No need for soldering or breadboarding.
PiKVM OS – the software is fully open.
Included
PiKVM V3 HAT board for Raspberry Pi 4
USB-C bridge board – to connect the HAT with Pi over USB-C
ATX controller adapter board and wiring – to connect the HAT to the motherboard (if you want to manage power supply through hardware).
2 flat CSI cables
Screws and brass standoffs
Required
Raspberry Pi 4
MicroSD card
USB-C to USB-A cable
HDMI cable
Straight Ethernet cable (for the ATX expansion board connection)
Power supply unit (5.1 V/3 A USB-C, officiel RPi power supply is recommended)
Downloads
User Guide
Images
GitHub
Links
The PiKVM Project and Lessons Learned: Q&A with PiKVM creator and developer Maxim Devaev
PiKVM: Raspberry Pi as a KVM Remote Control
The Arduino Pro Mini is a microcontroller board based on the ATmega328P.
It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, an on-board resonator, a reset button, and holes for mounting pin headers. A six pin header can be connected to an FTDI cable or SparkFun breakout board to provide USB power and communication to the board.
The Arduino Pro Mini is intended for semi-permanent installation in objects or exhibitions. The board comes without pre-mounted headers, allowing the use of various types of connectors or direct soldering of wires. The pin layout is compatible with the Arduino Mini.
The Arduino Pro Mini was designed and is manufactured by SparkFun Electronics.
Specifications
Microcontroller
ATmega328P
Board Power Supply
5-12 V
Circuit Operating Voltage
5 V
Digital I/O Pins
14
PWM Pins
6
UART
1
SPI
1
I²C
1
Analog Input Pins
6
External Interrupts
2
DC Current per I/O Pin
40 mA
Flash Memory
32 KB of which 2 KB used by bootloader
SRAM
2 KB
EEPROM
1 KB
Clock Speed
16 MHz
Dimensions
18 x 33.3 mm (0.7 x 1.3")
Downloads
Eagle files
Schematics
This bundle contains:
Book: Get Started with the NXP FRDM-MCXN947 Development Board (normal price: €40)
NXP FRDM-MCXN947 Development Board (normal price: €30)
Book: Get Started with the NXP FRDM-MCXN947 Development Board
Develop projects on connectivity, graphics, machine learning, motor control, and sensors
This book is about the use of the FRDM-MCXN947 Development Board, developed by NXP Semiconductors. It integrates the dual Arm Cortex-M33, operating at up to 150 MHz. Ideal for Industrial, IoT, and machine learning applications. It features Hi-Speed USB, CAN 2.0, I³C and 10/100 Ethernet. The board includes an on-board MCU-Link debugger, FlexI/O for LCD control, and dual-bank flash for read-while-write operations, supporting large external serial memory configurations.
One of the important features of the development board is that it features an integrated eIQ Neutron Neural Processing Unit (NPU), thus enabling users to develop AI-based projects. The development board also supports Arduino Uno form factor header pins, making it compatible with many Arduino shields, mikroBUS connector for MikroElektronika Click Boards, and Pmod connector.
One of the nice things of the FRDM-MCXN947 development board is that it includes several on-board debug probes, allowing programmers to debug their programs by communicating directly with the MCU. With the help of the debugger, programmers can single-step through a program, insert breakpoints, view and modify variables and so on.
Many working and tested projects have been developed in the book using the popular MCUXpresso IDE and the SDK with various sensors and actuators. Use of the popular CMSIS-DSP library is also explained with several commonly used matrix operations.
The projects provided in the book can be used without any modifications in many applications. Alternatively, readers can base their projects on those given in the book during the development of their own projects.
NXP FRDM-MCXN947 Development Board
The FRDM-MCXN947 is a compact and versatile development board designed for rapid prototyping with MCX N94 and N54 microcontrollers. It features industry-standard headers for easy access to the MCU's I/Os, integrated open-standard serial interfaces, external flash memory, and an onboard MCU-Link debugger.
Specifications
Microcontroller
MCX-N947 Dual Arm Cortex-M33 cores @ 150 MHz each with optimized performance efficiency, up to 2 MB dual-bank flash with optional full ECC RAM, External flash
Accelerators: Neural Processing Unit, PowerQuad, Smart DMA, etc.
Memory Expansion
*DNP Micro SD card socket
Connectivity
Ethernet Phy and connector
HS USB-C connectors
SPI/I²C/UART connector (PMOD/mikroBUS, DNP)
WiFi connector (PMOD/mikroBUS, DNP)
CAN-FD transceiver
Debug
On-board MCU-Link debugger with CMSIS-DAP
JTAG/SWD connector
Sensor
P3T1755 I³C/I²C Temp Sensor, Touch Pad
Expansion Options
Arduino Header (with FRDM expansion rows)
FRDM Header
FlexIO/LCD Header
SmartDMA/Camera Header
Pmod *DNP
mikroBUS
User Interface
RGB user LED, plus Reset, ISP, Wakeup buttons
Included
1x FRDM-MCXN947 Development Board
1x USB-C Cable
1x Quick Start Guide
Downloads
Datasheet
Block diagram
This RC522 RFID Kit includes a 13.56 MHz RF reader module that uses an RC522 IC and two S50 RFID cards to help you learn and add the 13.56 MHz RF transition to your project. The MF RC522 is a highly integrated transmission module for contactless communication at 13.56 MHz. RC522 supports ISO 14443A/MIFARE mode. The module uses SPI to communicate with microcontrollers. The open-hardware community already has a lot of projects exploiting the RC522 – RFID Communication, using Arduino. Features Operating Current: 13-26 mA/DC 3.3 V Idle Current: 10-13 mA/DC 3.3 V Sleep Current: <80 uA Peak Current: <30 mA Operating Frequency: 13.56 MHz Supported card types: mifare1 S50, mifare1 S70 MIFARE Ultralight, Mifare Pro, MIFARE DESFire Environmental Operating Temperature: -20-80 degrees Celsius Environmental Storage Temperature: -40-85 degrees Celsius Relative humidity: relative humidity 5% -95% Reader Distance: ≥50 mm/1.95' (Mifare 1) Module Size: 40×60 mm/1.57*2.34' Module interfaces SPI Parameter Data transfer rate: maximum 10 Mbit/s Included 1x RFID-RC522 Module 1x Standard S50 Blank Card 1x S50 special-shaped card (as shown by the keyring shape) 1x Straight Pin 1x Curved Pin Downloads Arduino Library MFRC522 Datasheet MFRC522_ANT Mifare S50
Raspberry Pi Camera Module 3 is a compact camera from Raspberry Pi. It offers an IMX708 12-megapixel sensor with HDR, and features phase detection autofocus. Camera Module 3 is available in standard and wide-angle variants, both of which are available with or without an infrared cut filter.
Camera Module 3 can be used to take full HD video as well as stills photographs, and features an HDR mode up to 3 megapixels. Its operation is fully supported by the libcamera library, including Camera Module 3’s rapid autofocus feature: this makes it easy for beginners to use, while offering plenty for advanced users. Camera Module 3 is compatible with all Raspberry Pi computers.
All variants of Raspberry Pi Camera Module 3 feature:
Back-illuminated and stacked CMOS 12-megapixel image sensor (Sony IMX708)
High signal-to-noise ratio (SNR)
Built-in 2D Dynamic Defect Pixel Correction (DPC)
Phase Detection Autofocus (PDAF) for rapid autofocus
QBC Re-mosaic function
HDR mode (up to 3 megapixel output)
CSI-2 serial data output
2-wire serial communication (supports I²C fast mode and fast-mode plus)
2-wire serial control of focus mechanism
Specifications
Sensor
Sony IMX708
Resolution
11.9 MP
Sensor size
7.4 mm sensor diagonal
Pixel size
1.4 x 1.4 µm
Horizontal/vertical
4608 x 2592 pixels
Common video modes
1080p50, 720p100, 480p120
Output
RAW10
IR cut filter
Integrated in standard variants; not present in NoIR variants
Autofocus system
Phase Detection Autofocus
Ribbon cable length
200 mm
Cable connector
15 x 1 mm FPC
Dimensions
25 x 24 x 11.5 mm (12.4 mm height for Wide variants)
Variants of Raspberry Pi Camera Module 3
Camera Module 3
Camera Module 3 NoIR
Camera Module 3 Wide
Camera Module 3 Wide NoIR
Focus range
10 cm - ∞
10 cm - ∞
5 cm - ∞
5 cm - ∞
Focal length
4.74 mm
4.74 mm
2.75 mm
2.75 mm
Diagonal field of view
75 degrees
75 degrees
120 degrees
120 degrees
Horizontal field of view
66 degrees
66 degrees
102 degrees
102 degrees
Vertical field of view
41 degrees
41 degrees
67 degrees
67 degrees
Focal ratio (F-stop)
F1.8
F1.8
F2.2
F2.2
Infrared-sensitive
No
Yes
No
Yes
Downloads
GitHub
Documentation
The Raspberry Pi M.2 HAT+ enables you to connect M.2 peripherals such as NVMe drives and AI accelerators to Raspberry Pi 5’s PCIe 2.0 interface, supporting fast (up to 500 MB/s) data transfer to and from NVMe drives and other PCIe accessories.
Raspberry Pi M.2 HAT+ supports devices that have the M.2 M key edge connector, in the 2230 and 2242 form factors. It is capable of supplying up to 3 A to connected M.2 devices.
Features
Supports single-lane PCIe 2.0 interface (500 MB/s peak transfer rate)
Supports devices that use the M.2 M key edge connector
Supports devices with the 2230 or 2242 form factor
Capable of supplying up to 3 A to connected M.2 devices
Power and activity LEDs
Included
1x Raspberry Pi 5 M.2 HAT+
1x Ribbon cable
1x GPIO stacking header
4x Spacers
8x Screws
Downloads
Datasheet
Schematics
Assembly instructions
SD card quality is crucial for a good Raspberry Pi experience. Raspberry Pi's A2 microSD cards support higher bus speeds and command queuing, improving random read performance and narrowing the gap with NVMe SSDs. These cards are rigorously tested for optimal performance with Raspberry Pi models.
Features
Capacity: 64 GB
Support for DDR50 and SDR104 bus speeds and command queueing (CQ) extension
Speed Class: C10, U3, V30, A2
Random 4 KB read performance: 3,200 IOPS (Raspberry Pi 4, DDR50) 5,000 IOPS (Raspberry Pi 5, SDR104)
Random 4 K write performance: 1,200 IOPS (Raspberry Pi 4, DDR50) 2,000 IOPS (Raspberry Pi 5, SDR104)
Shock-proof, X-ray–proof, and magnet-proof
microSDHC/microSDXC formats
Downloads
Datasheets
The ZD-5L Hot Glue Gun is a versatile and easy-to-use tool designed for household, DIY, and professional use. It features a compact and lightweight design for comfortable handling, and its built-in stand ensures safe and stable operation.
Whether you're a DIY enthusiast or a professional, this Glue Gun is a perfect addition to your toolkit, an efficient and practical solution for bonding, repairing, and creating. It is ideal for various materials like glass, cardboard, metal, plastic, leather, fabric and more.
The ZD-5L uses 7.2 mm glue sticks. It is powered by an 18650 battery and charged via USB-C.
Specifications
Charging Voltage
5 V DC
Charging Current
Adaptive, 2 A (max)
Charging Interface
USB-C
Battery
18650 Lithium
Glue Stick
7.2 mm OD
Heat-up time
approx. 2 min.
Time of Use
approx. 60 min.
Sleep Time
5 min. without action
Included
1x ZD-5L Glue Gun
1x 18650 Lithium battery (2200 mAh)
2x Glue Sticks (10 cm)
1x USB cable
SD card quality is crucial for a good Raspberry Pi experience. Raspberry Pi's A2 microSD cards support higher bus speeds and command queuing, improving random read performance and narrowing the gap with NVMe SSDs. These cards are rigorously tested for optimal performance with Raspberry Pi models.
Features
Capacity: 32 GB
Support for DDR50 and SDR104 bus speeds and command queueing (CQ) extension
Speed Class: C10, U3, V30, A2
Random 4 KB read performance: 3,200 IOPS (Raspberry Pi 4, DDR50) 5,000 IOPS (Raspberry Pi 5, SDR104)
Random 4 K write performance: 1,200 IOPS (Raspberry Pi 4, DDR50) 2,000 IOPS (Raspberry Pi 5, SDR104)
Shock-proof, X-ray–proof, and magnet-proof
microSDHC/microSDXC formats
Downloads
Datasheets
The ICL8038 signal generator delivers versatile waveforms, including sine, triangle, square, and forward/reverse sawtooth, making it suitable for a wide range of applications. Powered by the ICL8038 chip and high-speed operational amplifiers, it ensures exceptional precision and signal stability.
With a frequency range of 5 Hz to 400 kHz, it supports applications from audio to radio frequencies. Its adjustable duty cycle, ranging from 2% to 95%, allows for precise waveform customization to meet various needs.
The DIY kit is beginner-friendly, featuring through-hole components for easy assembly. It includes all necessary parts, an acrylic shell, and a detailed manual, providing everything required to build and use the signal generator efficiently.
Specifications
Frequency range
5 Hz~400 KHz (adjustable)
Power supply voltage
12 V~15 V
Duty cycle range
2~95% (adjustable)
Low distortion sine wave
1%
Low temperature drift
50 ppm/°C
Output triangular wave linearity
0.1%
DC bias range
−7.5 V~7.5 V
Output amplitude range
0.1 V~11 VPP (working voltage 12 V)
Dimensions
89 x 60 x 35 mm
Weight
81 g
Included
PCB incl. all necessary components
Acrylic shell
Manual
The DIY Mini Digital Oscilloscope Kit (with shell) is an easy-to-build kit for a tiny digital oscilloscope. Besides the power switch, it has only one other control, a rotary encoder with a built-in pushbutton. The kit's microcontroller comes preprogrammed. The 0.96" OLED display has a resolution of 128 x 64 pixels. The oscilloscope features one channel that can measure signals up to 100 kHz. The maximum input voltage is 30 V, the minimum voltage is 0 V.
The kit consists of through-hole components (THT) are surface-mount devices (SMD). Therefore, assembling the kit means soldering SMD parts, which requires some soldering experience.
Specifications
Vertical range: 0 to 30 V
Horizontal range: 100 µs to 500 ms
Trigger type: auto, normal and single
Trigger edge: rising and falling
Trigger level: 0 to 30 V
Run/Stop mode
Automatic frequency measurement
Power: 5 V micro-USB
10 Hz, 5 V sinewave output
9 kHz, 0 to 4.8 V square wave output
Display: 0.96-inch OLED screen
Dimensions: 57 x 38 x 26 mm
Downloads
Documentation
ESP32-S3-BOX-3 is based on Espressif’s ESP32-S3 Wi-Fi + Bluetooth 5 (LE) SoC, with AI acceleration capabilities. In addition to ESP32-S3’s 512 KB SRAM, ESP32-S3-BOX-3 comes with 16 MB of Quad flash and 16 MB of Octal PSRAM.
ESP32-S3-BOX-3 runs Espressif’s own speech-recognition framework, ESP-SR, which provides users with an offline AI voice-assistant. It features far-field voice interaction, continuous recognition, wake-up interruption, and the ability to recognize over 200 customizable command words. BOX-3 can also be transformed into an online AI chatbot using advanced AIGC development platforms, such as OpenAI.
Powered by the high-performance ESP32-S3 SoC, BOX-3 provides developers with an out-of-the-box solution to creating Edge AI and HMI applications. The advanced features and capabilities of BOX-3 make it an ideal choice for those in the IIoT industry who want to embrace Industry 4.0 and transform traditional factory-operating systems.
ESP32-S3-BOX-3 is the main unit powered by the ESP32-S3-WROOM-1 module, which offers 2.4 GHz Wi-Fi + Bluetooth 5 (LE) wireless capability as well as AI acceleration capabilities. On top of 512 KB SRAM provided by the ESP32-S3 SoC, the module comes with additional 16 MB Quad flash and 16 MB Octal PSRAM. The board is equipped a 2.4-inch 320 x 240 SPI touch screen (the ‘red circle’ supports touch), two digital microphones, a speaker, 3‑axis Gyroscope, 3‑axis Accelerometer, one Type-C port for power and download/debug, a high-density PCIe connector which allows for hardware extensibility, as well as three functional buttons.
Features
ESP32-S3
WiFi + Bluetooth 5 (LE)
Built-in 512 KB SRAM
ESP32-S3-WROOM-1
16 MB Quad flash
16 MB Octal PSRAM
Included
ESP32-S3-BOX-3 Unit
ESP32-S3-BOX-3 Sensor
ESP32-S3-BOX-3 Dock
ESP32-S3-BOX-3 Bracket
ESP32-S3-BOX-3 Bread
RGB LED module and Dupont wires
USB-C cable
Downloads
GitHub
The ESP32-S3-DevKitC-1 is an entry-level development board equipped with ESP32-S3-WROOM-1U, a general-purpose Wi-Fi + Bluetooth Low Energy MCU module that integrates complete Wi-Fi and Bluetooth Low Energy functions.
Most of the I/O pins on the module are broken out to the pin headers on both sides of this board for easy interfacing. Developers can either connect peripherals with jumper wires or mount ESP32-S3-DevKitC-1 on a breadboard.
Features
Module integrated: ESP32-S3-WROOM-1U-N8R8
Flash: 8 MB QD
PSRAM: 8 MB OT
SPI voltage: 3.3 V
Specifications
ESP32-S3-WROOM-1U
ESP32-S3-WROOM-1U is a powerful, generic Wi-Fi + Bluetooth Low Energy MCU module that has a rich set of peripherals. It provides acceleration for neural network computing and signal processing workloads. ESP32-S3-WROOM-1U comes with an external antenna connector.
5 V to 3.3 V LDO
Power regulator that converts a 5 V supply into a 3.3 V output.
Pin Headers
All available GPIO pins (except for the SPI bus for flash) are broken out to the pin headers on the board for easy interfacing and programming.
USB-to-UART Port
A Micro-USB port used for power supply to the board, for flashing applications to the chip, as well as for communication with the chip via the on-board USB-to-UART bridge.
Boot Button
Download button. Holding down Boot and then pressing Reset initiates Firmware Download mode for downloading firmware through the serial port.
Reset Button
Press this button to restart the system.
USB Port
ESP32-S3 full-speed USB OTG interface, compliant with the USB 1.1 specification. The interface is used for power supply to the board, for flashing applications to the chip, for communication with the chip using USB 1.1 protocols, as well as for JTAG debugging.
USB-to-UART Bridge
Single USB-to-UART bridge chip provides transfer rates up to 3 Mbps.
RGB LED
Addressable RGB LED, driven by GPIO38.
3.3 V Power On LED
Turns on when the USB power is connected to the board.
Downloads
Pinout
The Arduino Nano ESP32 (with and without headers) is a Nano form factor board based on the ESP32-S3 (embedded in the NORA-W106-10B from u-blox). This is the first Arduino board to be based fully on an ESP32, and features Wi-Fi, Bluetooth LE, debugging via native USB in the Arduino IDE as well as low power. The Nano ESP32 is compatible with the Arduino IoT Cloud, and has support for MicroPython. It is an ideal board for getting started with IoT development. Features
Tiny footprint: Designed with the well-known Nano form factor in mind, this board's compact size makes it perfect for embedding in standalone projects.
Wi-Fi and Bluetooth: Harness the power of the ESP32-S3 microcontroller, well-known in the IoT realm, with full Arduino support for wireless and Bluetooth connectivity.
Arduino and MicroPython support: Seamlessly switch between Arduino and MicroPython programming with a few simple steps.
Arduino IoT Cloud compatible: Quickly and easily create IoT projects with just a few lines of code. The setup takes care of security, allowing you to monitor and control your project from anywhere using the Arduino IoT Cloud app.
HID support: Simulate human interface devices, such as keyboards or mice, over USB, opening up new possibilities for interacting with your computer. Specifications Microcontroller u-blox NORA-W106 (ESP32-S3) USB connector USB-C Pins Built-in LED pins 13 Built-in RGB LED pins 14-16 Digital I/O pins 14 Analog input pins 8 PWM pins 5 External interrupts All digital pins Connectivity Wi-Fi u-blox NORA-W106 (ESP32-S3) Bluetooth u-blox NORA-W106 (ESP32-S3) Communication UART 2x I²C 1x, A4 (SDA), A5 (SCL) SPI D11 (COPI), D12 (CIPO), D13 (SCK). Use any GPIO for Chip Select (CS) Power I/O Voltage 3.3 V Input voltage (nominal) 6-21 V Source Current per I/O pin 40 mA Sink Current per I/O pin 28 mA Clock speed Processor Up to 240 MHz Memory ROM 384 kB SRAM 512 kB External Flash 128 Mbit (16 MB) Dimensions 18 x 45 mm Downloads Datasheet Schematics
This 'All in One' Raspberry Pi 4 Desktop Starterkit contains all official parts and allows an easy and quick start!
Raspberry Pi 4 Desktop Kit contains:
Raspberry Pi US Keyboard & Mouse
2x micro HDMI to Standard HDMI cable (A/M) 1 m
Raspberry Pi 15.3 W USB-C Power Supply (EU version)
Raspberry Pi 4 Case
Official Raspberry Pi Beginner's Guide (English language)
16 GB NOOBS with Raspbian microSD card
Raspberry Pi 4 B is NOT included.
The official Raspberry Pi keyboard and hub is a standard 78-key US keyboard that includes an additional three USB 2.0 type A ports to power other peripherals. The keyboard is available in different language/country options as detailed below. 78-key US keyboard Three USB 2.0 type A ports for powering other peripherals Automatic keyboard language detection USB type A to micro USB type B cable included for connection to compatible computer Ergonomic design for comfortable use Compatible with all Raspberry Pi products
Build robust, intelligent machines that combine Raspberry Pi computing power with LEGO components.
The Raspberry Pi Build HAT provides four connectors for LEGO Technic motors and sensors from the SPIKE Portfolio. The available sensors include a distance sensor, a color sensor, and a versatile force sensor. The angular motors come in a range of sizes and include integrated encoders that can be queried to find their position.
The Build HAT fits all Raspberry Pi computers with a 40-pin GPIO header, including – with the addition of a ribbon cable or other extension device — Raspberry Pi 400. Connected LEGO Technic devices can easily be controlled in Python, alongside standard Raspberry Pi accessories such as a camera module.
Features
Controls up to 4 motors and sensors
Powers the Raspberry Pi (when used with a suitable external PSU)
Easy to use from Python on the Raspberry Pi
KVM stands for Keyboard, Video, and Mouse and it is a powerful open-source software that enables remote access via Raspberry Pi. This KVM-A3 kit is designed based on the Raspberry Pi 4.
With it, you can turn your computer on or off, restart it, configure the UEFI/BIOS, and even reinstall the operating system using a virtual CD-ROM or flash drive. You can either use your own remote keyboard and mouse, or let KVM simulate a keyboard, mouse, and monitor – presented through a web browser as if you were directly interacting with the remote system. It's true hardware-level access with no dependency on remote ports, protocols, or services!
Features
Designed especially for KVM (an open and affordable DIY IP-KVM based on Raspberry Pi)
Compatible with Raspberry Pi 4 (not included)
Fully compatible with PiKVM V3 OS
Control a server or computer using a web browser
HDMI Full HD capture based on the TC358743 chip
OTG keyboard and mouse support; mass storage drive emulation
Hardware Real-Time Clock (RTC) with CR1220 coin battery socket
Equipped with a cooling fan to dissipate heat from the Raspberry Pi
Features solid-state relays to protect Raspberry Pi GPIO pins from computer and ESD spikes
ATX control via RJ45 connector: switch the machine on or off, reset it, and monitor HDD and power LED status remotely
10-pin SH1.0 connector reserved for future I²S HDMI audio support
4-pin header and spacers reserved for I²C OLED display
Included
KVM-A3 Metal Case for Raspberry Pi 4
X630 HDMI to CSI-2 Module (for video capture)
X630-A3 Expansion Board (provides Ethernet, cooling, RTC, power input, etc.)
X630-A5 Adapter Board (installed inside the PC case; connects the computer motherboard to the IO panel cable of the PC case)
0.96-inch OLED Display (128 x 64 pixels)
Ethernet Cable (TIA/EIA-568.B standard; also serves as the ATX control signal cable)
Downloads
Wiki
PiKVM OS
Raspberry Pi Camera Module 3 is a compact camera from Raspberry Pi. It offers an IMX708 12-megapixel sensor with HDR, and features phase detection autofocus. Camera Module 3 is available in standard and wide-angle variants, both of which are available with or without an infrared cut filter.
Camera Module 3 can be used to take full HD video as well as stills photographs, and features an HDR mode up to 3 megapixels. Its operation is fully supported by the libcamera library, including Camera Module 3’s rapid autofocus feature: this makes it easy for beginners to use, while offering plenty for advanced users. Camera Module 3 is compatible with all Raspberry Pi computers.
All variants of Raspberry Pi Camera Module 3 feature:
Back-illuminated and stacked CMOS 12-megapixel image sensor (Sony IMX708)
High signal-to-noise ratio (SNR)
Built-in 2D Dynamic Defect Pixel Correction (DPC)
Phase Detection Autofocus (PDAF) for rapid autofocus
QBC Re-mosaic function
HDR mode (up to 3 megapixel output)
CSI-2 serial data output
2-wire serial communication (supports I²C fast mode and fast-mode plus)
2-wire serial control of focus mechanism
Specifications
Sensor
Sony IMX708
Resolution
11.9 MP
Sensor size
7.4 mm sensor diagonal
Pixel size
1.4 x 1.4 µm
Horizontal/vertical
4608 x 2592 pixels
Common video modes
1080p50, 720p100, 480p120
Output
RAW10
IR cut filter
Integrated in standard variants; not present in NoIR variants
Autofocus system
Phase Detection Autofocus
Ribbon cable length
200 mm
Cable connector
15 x 1 mm FPC
Dimensions
25 x 24 x 11.5 mm (12.4 mm height for Wide variants)
Variants of Raspberry Pi Camera Module 3
Camera Module 3
Camera Module 3 NoIR
Camera Module 3 Wide
Camera Module 3 Wide NoIR
Focus range
10 cm - ∞
10 cm - ∞
5 cm - ∞
5 cm - ∞
Focal length
4.74 mm
4.74 mm
2.75 mm
2.75 mm
Diagonal field of view
75 degrees
75 degrees
120 degrees
120 degrees
Horizontal field of view
66 degrees
66 degrees
102 degrees
102 degrees
Vertical field of view
41 degrees
41 degrees
67 degrees
67 degrees
Focal ratio (F-stop)
F1.8
F1.8
F2.2
F2.2
Infrared-sensitive
No
Yes
No
Yes
Downloads
GitHub
Documentation
The Arduino Giga R1 WiFi brings the power of the STM32H7 to the same form factor as the popular Mega and Due, being the first Mega board to include onboard Wi-Fi and Bluetooth connectivity.
The board provides 76 digital inputs/outputs (12 with PWM capability), 14 analog inputs and 2 analog outputs (DAC) all easily accessible via pin headers. The STM32 microprocessor with dual-core Cortex-M7 and Cortex-M4, together with onboard memory and audio jack enables you to perform machine learning and signal processing on the edge.
Microcontroller (STM32H747XI)
This dual core 32-bits microcontroller allows you have two brain talking to each other (a Cortex-M7 at 480 MHz and a Cortex-M4 at 240 MHz) you can even run micropython in one and Arduino in the other.
Wireless communication (Murata 1DX)
Whether you prefer Wi-Fi or Bluetooth, the Giga R1 WiFi got you covered. You can even quickly connect to the Arduino IoT Cloud and keep track of your project remotely. And if you are concerned about the security of the communication, the ATECC608A keeps everything under control.
Hardware ports and communication
Following the legacy of the Arduino Mega and the Arduino Due, the Giga R1 WiFi has 4x UARTs (hardware serial ports), 3x I²C ports (1 more than its predecessors), 2x SPI ports (1 more than its predecessors), 1x FDCAN.
GPIOs and extra pins
By keeping the same form factor of the Mega and the Due, you can easily adapt your custom made shields to the Giga R1 WiFi (remember this board works at 3.3 V though!). Also, additional headers have been added so that the total number of GPIO pins is now 76, and two new pins have been added: a VRTC so you can connect a battery to keep the RTC running while the board is off and an OFF pin so you can shut down the board.
Connectors
The Giga R1 WiFi has extra connectors on board which will facilitate the creation of your project without any extra hardware. This board has:
USB-A connector suitable for hosting USB sticks, other mass storage devices and HID devices such as keyboard or mouse.
3.5 mm input-output jack connected to DAC0, DAC1 and A7.
USB-C to power and program the board, as well as simulate an HID device such as mouse or keyboard.
Jtag connector, 2x5 1.27 mm.
20-pin Arducam camera connector.
Higher voltage support: In comparison with its predecessors that support up to 12 V, the Giga R1 WiFi can handle a range of 6 to 24 V.
Specifications
Microcontroller
STM32H747XI dual Cortex-M7+M4 32-bit low power ARM MCU (datasheet)
Radio Module
Murata 1DX dual WiFi 802.11b/g/n 65 Mbps and Bluetooth (datasheet)
Secure Element
ATECC608A-MAHDA-T (datasheet)
USB
USB-C
Programming Port / HID
USB-A
Host (enable with PA_15)
Pins
Digital I/O pins
76
Analog input pins
12
DAC
2 (DAC0/DAC1)
PWM pins
12
Misc
VRT & OFF pin
Communication
UART
4x
I²C
3x
SPI
2x
CAN
Yes (requires an external transceiver)
Connectors
Camera
I²C + D54-D67
Display
D1N, D0N, D1P, D0P, CKN, CKP + D68-D75
Audio Jack
DAC0, DAC1, A7
Power
Circuit operating voltage
3.3 V
Input voltage (VIN)
6-24 V
DC Current per I/O Pin
8 mA
Clock Speed
Cortex-M7
480 MHz
Cortex-M4
240 MHz
Memory
STM32H747XI
2 MB Flash, 1 MB RAM
Dimensions
53 x 101 mm
Downloads
Datasheet
Schematics
Pinout